Parathyroid hormone enhances bone morphogenetic protein activity by increasing intracellular 3', 5'-cyclic adenosine monophosphate accumulation in osteoblastic MC3T3-E1 cells.

نویسندگان

  • Yoshihiro Nakao
  • Tatsuya Koike
  • Yoichi Ohta
  • Tomoya Manaka
  • Yuuki Imai
  • Kunio Takaoka
چکیده

Intermittent subcutaneous injections of parathyroid hormone (PTH) increase bone mass in a variety of animal models and humans. The anabolic actions of PTH on osteogenic cells are mainly mediated through the protein kinase A (PKA) signaling pathway via PTH receptor 1 (PTHR1). We have already reported 3', 5'-cyclic adenosine monophosphate (cAMP)/PKA-mediated enhancement of bone morphogenetic protein (BMP) signaling. Herein, we focused on the involvement of PTH in BMP signaling pathways in the MC3T3-E1 mouse osteoblastic cell line, to elucidate a potential mechanism of the anabolic actions of PTH on bone formation. Elevation of intracellular cAMP level in MC3T3-E1 cells by addition of PTH (10(-7) M) to culture media was transient without significant effect on biological actions of BMP. Cyclic addition of PTH (10 cyclic additions of 10(-8) M PTH at 3-min intervals) maintained a high intracellular cAMP level for about 2 h and mRNA expression and enzymatic activity of alkaline phosphatase (ALP) by BMP was enhanced by this addition. Relative luciferase expression assay in MC3T3-E1 cells using the Id1 promoter, an early response gene to BMPs, enhanced elevation of transcriptional activity in response to recombinant human BMP-2 by concomitant addition of PTH and BMP. Furthermore, cyclic PTH treatment significantly further suppressed BMP-induced inhibitory Smad6 expression. H89 (PKA inhibitor) almost completely abolished PTH actions on BMP signaling. IBMX (phosphodiesterase inhibitor) enhanced PTH actions. These results suggest that PTH enhances BMP signaling when PTH-induced intracellular cAMP level is maintained for a few hours, accelerating BMP actions to promote osteoblastic function and anabolic actions of new bone formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of caspases is required for osteoblastic differentiation.

Previous studies have shown that mouse osteoblastic MC3T3-E1 cells undergo apoptosis when exposed to a mixture of proinflammatory cytokines. Bone morphogenetic protein (BMP)s are important regulators of osteoblast differentiation. Because regulation of osteoblastic differentiation is poorly understood, we sought to determine if BMP-4-induced differentiation of osteoblastic cells depends on the ...

متن کامل

Parathyroid hormone-related protein exhibits antioxidant features in osteoblastic cells through its N-terminal and osteostatin domains

OBJECTIVES Oxidative stress plays a major role in the onset and progression of involutional osteoporosis. However, classical antioxidants fail to restore osteoblast function. Interestingly, the bone anabolism of parathyroid hormone (PTH) has been shown to be associated with its ability to counteract oxidative stress in osteoblasts. The PTH counterpart in bone, which is the PTH-related protein (...

متن کامل

Cloning and characterization of a novel WD-40 repeat protein that dramatically accelerates osteoblastic differentiation.

The bone morphogenetic proteins (BMPs) play a pivotal role in endochondral bone formation. Using differential display polymerase chain reaction, we have identified a novel gene, named BIG-3 (BMP-2-induced gene 3 kb), that is induced as a murine prechondroblastic cell line, MLB13MYC clone 17, acquires osteoblastic features in response to BMP-2 treatment. The 3-kilobase mRNA encodes a 34-kDa prot...

متن کامل

Hwanggeumchal sorghum extract enhances BMP7 and GH signaling through the activation of Jak2/STAT5B in MC3T3‑E1 osteoblastic cells.

Sorghum is a principal cereal food in a number of parts of the world and is critical in folk medicine in Asia and Africa. However, its effects on bone are unknown. Growth hormone (GH) is a regulator of bone growth and bone metabolism. GH activates several signaling pathways, including the Janus kinase (Jak)/signal transducer and activator of transcription (STAT) pathways, thereby regulating exp...

متن کامل

Osteostatin improves the osteogenic activity of fibroblast growth factor-2 immobilized in Si-doped hydroxyapatite in osteoblastic cells.

Si-doped hydroxyapatite (Si-HA) is a suitable ceramic for the controlled release of agents to improve bone repair. We recently showed that parathyroid hormone-related protein (PTHrP) (107-111) (osteostatin) has remarkable osteogenic features in various in vitro and in vivo systems. Fibroblast growth factor (FGF)-2 modulates osteoblastic function and induces angiogenesis, and can promote osteobl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bone

دوره 44 5  شماره 

صفحات  -

تاریخ انتشار 2009